NEW TREATMENT APPROACHES FOR
HEMATOLOGIC MALIGNANCES-LEUKEMIA,
LYMPHOMA AND MULTIPLE MYELOMA

New Strategies for the Treatment of
Hematologic Malignancies

- Leukemia 242
- Lymphoma/Multiple Myeloma 242
 - Hodgkin’s Disease 242
 - Non Hodgkin’s Lymphoma 242
 - Multiple Myeloma 242

Extensions and Reformulations of
Existing Drugs 243

- Ilex Oncology 243

Biologic Therapies 243

- Monoclonal Antibodies/Immunocytokines/
Immunotoxins 243
- Celltech 243
- Coulter 243
- IDEC Pharmaceuticals 243
- ImmunoGen 244
- Immunomedics 245
- Medarex 245
- Protein Design Labs 245
- Seragen 245
- Techniclone International 246
- University of Minnesota 247

Immunization/Vaccines/Gene Transfer 248

- Apollon 248
- Cytel 248
- Stanford University 248
- Vical 249

Growth factors/Cytokines 249

- Immunex 249
- Glaxo Wellcome 249

Novel Chemotherapeutics 249

- Retinoids 249
 - Allergan Ligand Retinoid Therapeutics 250

Aronex Pharmaceuticals 250
Leo Pharmaceutical Products 250
Ligand Pharmaceuticals 251
Sparta Pharmaceuticals 251
Taxanes 251

Topoisomerase Inhibitors/
Naturally-derived Alkaloids 251

- Cephalostatins 251
- Harringtonine (HT) and homoharringtonine (HHT) 251

Oligonucleotide-based Drugs 252

- Genta 252
- Lynx Therapeutics 252
- RGene Therapeutics 253

Other Agents 253

- AntiCancer 253
- BioCryst Pharmaceuticals 253
- DepoTech 253
- Mitotix 253

MEETING COVERAGE

Advances in Breast Cancer Treatment
A Report from the Sixth International Congress
on Anti-Cancer Treatment (ICAT), Paris, France,
February 6-9, 1996

Detection of Angiogenesis 254
Chemotherapy 254

- Primary Medical Treatment of Operable
Breast Cancer 254
- Monotherapy 261
 - S-1 261
- Combination Therapy 261
 - Docetaxel 261
 - Paclitaxel 262
 - Vinorelbine 262
 - Gemcitabine 263
 - FILM 263

Intra-arterial Chemotherapy 263
NEW TREATMENT APPROACHES FOR HEMATOLOGIC MALIGNANCIES-LEUKEMIA, LYMPHOMA AND MULTIPLE MYELOMA

NEW STRATEGIES FOR THE TREATMENT OF HEMATOLOGIC MALIGNANCIES

Approved methodologies and novel approaches in development for treatment of hematologic malignan-

cies involve mostly drug therapy and radiotherapy, but bone marrow ablation, with subsequent rescue using hematopoietic cell transplants, is also proving useful in relapsed disease. Although most hematologic malignan-
cies, with the exception of non Hodkgin’s lymphoma (NHL), are relatively rare, they present a potentially

large market for drug-based therapies that are used almost invariably as first-line treatment and, also, for

maintenance, in relapse and for rescue. A patient with a hematologic malignancy may be under drug treatment

until cured or expires, sometimes for as long as three years. In view of the global opportunity for drugs to treat

hematologic malignancies (see Exhibit 1), numerous agents are in development (see Exhibit 2). Not included in

this discussion are adjunctive therapies and drugs/devices used in ex vivo cell processing, bone mar-

row purging and transplantation of hematopoietic cells.

Leukemia

In spite of several novel drugs having entered the clinic recently, outcomes of leukemia patients are disap-

pointing, remissions are short-lived, and only a relatively small percent of patients survive past five years. How-

ever, several new approaches have somewhat improved the short-term outlook for leukemia patients. For

instance, manipulations of induction regimens have increased remission rates in acute myelocytic leukemia

(AML) and contributed to improved long term survival. One approach that has been used successfully in failed

chemotherapy patients, and is now being increasingly used to sustain remissions, is transplantation of bone

marrow (BMT) and/or peripheral blood stem cells (PBSC). Leukemia represents the most common indica-

tion for allogeneic BMT (alloBMT), accounting for 74% of all such transplants worldwide, 73.4% in the USA and

75.4% in Europe, in 1993 (see FO, V1 #9, pp 209-215).

Lymphoma/Multiple Myeloma

Chemotherapy, radiation therapy and BMT are standard therapies for lymphoma/multiple myeloma. This

group of diseases is second only to leukemias as an indication for BMT (see FO, V1 #10, pp 226-231).

Hodgkin’s Disease

The most promising treatment approaches in Hodgkin’s disease (HD) involve biologic modalities, such

as the use of isotopic immunoglobulins directed against ferritin and monoclonal antibodies (MAbs) targeting

interleukin-2 (IL-2), which is expressed on HD cells. In five consecutive clinical studies, 134 patients with recur-

rent HD were treated by radioimmunotherapy (RIT) at M. D. Anderson Cancer Center (Houston, TX), using IV

antiferritin labeled with iodine-131 (131I) or indium-111 (111In) for diagnostic purposes, and yttrium-90 (90Y) for

therapeutic purposes. Overall response rate among patients with recurrent, end-stage HD, treated with 90Y-

labeled antiferritin, was 60%, with 50% being complete responses (CRs). Patients achieving CR survived signifi-

cantly longer than partial responders (2 years versus 1 year). Results with 90Y-labeled antiferritin were signifi-

antly better than those with 131I-labeled antiferritin. RIT, a low-toxicity, low-cost, outpatient procedure for

recurrent HD, elicits a high response rate in patients with unfavorable prognosis (Vriesendorp IM, etal, Cancer

Non Hodkgin’s Lymphoma

Biologic therapies also represent promising treatment approaches for NHL, particularly low-grade lymphoma,
because the indolent nature of the disease selects for patients who are relatively healthy and have a sufficiently

long life expectancy to allow time to respond to the agent being tested. Numerous agents are in phase III trials for

this indication, most prominent among them various MAb-based therapeutics.

Multiple Myeloma

New treatment approaches for multiple myeloma are based on new insights into the disease. A hallmark of the

various phases of multiple myeloma is a dysregulated cytokine network. For instance, IL-6, a hematopoietic

cytokine, was shown to promote growth of myeloma cells, and serum IL-6 levels have been shown to correlate

with prognosis. One treatment approach, therefore, involves neutralizing IL-6 in vivo, using anti-IL-6 MABs.

However, none of the patients treated with this method achieved remission or improved outcome as judged by

multiple myeloma is IL-1β. Aberrant expression of IL-1β which is a known osteoclast activating factor, can alter

expression of IL-6. IL-1β also regulates expression of adhesion molecules that may enable malignant cells to

homoe to the bone marrow (Lacy, MQ, etal, Blood, Vol 86, No 10, Supplement to Nov 15, 1995, Abs. 215). In con-

trast, interferon-γ (IFN-γ) was shown to be an inhibitor, of in vitro, proliferation of an IL-6-dependent myeloma

cell line. This antiproliferative effect appears to be caused mainly by inhibition of IL-6 (Palumbo A, etal, Leukemia and Lymphoma, 1995 Jul, 18(3-4):215-9).

Mechanisms associated with osteolytic bone destruc-
tion, one of the hallmarks of multiple myeloma, are poorly

understood. Investigators at VA Medical Center and the

COPYRIGHT © 1996 NEW MEDICINE, INC. 714. 830. 0448.
University of Texas (San Antonio, TX) cloned a novel osteoclast stimulatory factor (OSF) expressed by bone marrow cells. This clone was shown to be a novel gene by sequence analysis with no homology to any known cytokine (Alsina M, et al, Blood, Vol 86, No 10, Supplement to Nov 15, 1995, Abs. 213).

EXTENSIONS AND REFORMULATIONS OF EXISTING DRUGS

Conventional chemotherapy usually results in high initial response but many patients with hematologic malignancies invariably relapse within a short period of time. Relapsed disease is almost uniformly fatal. Numerous drug combinations are being clinically evaluated in relapsed hematologic malignancies, with varying success but, to date, none has affected a cure. Interestingly, because of the dearth of new agents, developers are resurrecting older drugs that may be reformulated or administered under alternative regimens to improve effectiveness and/or mitigate toxicities. Reformulations of existing drugs employing various drug delivery technologies, also represent creative solutions breathing new life into drugs of limited use because of poor pharmacokinetics, difficult administration requirements, and serious toxicities. For instance, using a proprietary liposome encapsulation technology, Sequus Pharmaceuticals (Menlo Park, CA) has developed and is evaluating new versions of such often used anticancer drugs as doxorubicin (Doxil; approved in the USA for the treatment of Kaposi’s sarcoma in November 1995), vincristine and cisplatin.

Ilex Oncology (San Antonio, TX), a private company, is developing two drugs for the treatment of hematologic malignancies. In March 1996, Ilex initiated a phase I clinical trial with aminopterin (AMT) in children with acute lymphocytic leukemia (ALL) who are unresponsive to the standard chemotherapy drug, methotrexate (MTX). Ilex purified and reformulated AMT, one of the first chemotherapy drugs to be used in childhood ALL, that was subsequently abandoned as newer, less toxic drugs became available. Ilex believes that better manufacturing methods should improve the clinical profile of AMT. Another drug, mitoguazone (MGBG), a polyamine biosynthesis inhibitor, discarded in the 1960s because it caused severe mucositis and other toxicities, was resurrected in the late 1970s. Using a weekly administration schedule, the drug was effective and well tolerated in clinical trials in refractory HD and NHL. MGBG is non-myelosuppressive, crosses the blood brain barrier and appears to work better in malnourished patients, such as those with AIDS-related lymphoma, probably because of polyamine depletion associated with inanition. Currently, MGBG is in a phase III pivotal multicenter clinical trial for the treatment of refractory/relapsed AIDS-related lymphoma. The drug has been licensed to Sanofi Winthrop worldwide, in exchange for project funding, milestone payments and royalties.

BIOLOGIC THERAPIES

Monoclonal Antibodies/Immunotoxins

MAB-based treatment approaches are making a strong comeback after years of disappointing results. Used alone or in combination with radioisotopes, immunotoxins or drugs, better engineered MABs are proving clinically useful in the treatment of various hematologic malignancies. Actually, MAB-based agents are the only biologic therapies in phase III trials for hematologic malignancies. However, in most cases MABs serve as drug delivery vehicles, targeting cell killing agents to tumor cells and not as therapeutics in their own right. Also, with several of the radioimmunoconjugates, hematopoietic cell transplants are required to rescue patients administered high doses of the radioimmunoconjugate that is necessary to elicit a response.

A promising approach using unconjugated MABs as therapeutic agents is an anti-CD20 MAb, which depletes malignant and mature normal B cells, in development by IDEC Pharmaceuticals. A notable failure among unconjugated MABs is that of Campath-1H, which was in phase II clinical trials in NHL, sponsored by Glaxo Wellcome.

Celltech (Slough, Berkshire) is developing, jointly with American Home Products (Lederle), CDP-771, a recombinant humanized MAb linked to calicheamicin that binds to CD33, the specific antigen present on myeloid progenitor cells. The agent was in phase II clinical trials in the treatment of AML as of mid-summer 1995.

Coulter (Miami, FL) is clinically evaluating 131I-B1 (anti-CD20) MAB therapy with autologous stem cell transplantation rescue for relapsed B cell lymphomas. In a 25-patient phase II clinical trial of relapsed B-cell lymphoma, 18 of the 21 treated patients achieved objective responses, including 16 CRs. One patient died of progressive lymphoma and one died of sepsis. Analysis of phase I and II trials reveal a progression-free survival of 62% and an overall survival of 93% with a median follow-up of 2 years. This therapy produces CRs of long duration in most patients with relapsed B-cell lymphomas when given at maximally tolerated doses, followed by autologous stem cell rescue (Press OW, et al, Lancet, 1995 Aug 5, 346(8971):336-40).

IDEC Pharmaceuticals (San Diego, CA) is focusing on the development of MAB-based approaches to treat cancer and immune-mediated disorders. Its lead product is IDEC-C2B8, currently in phase III trials as an adjunct for the treatment of B cell NHL. IDEC-C2B8, an anti-CD20 chimeric MAB (pan-B), targets CD20 antigen present on mature B cells and B cell tumors but not on B cell precursors or on plasma cells. IDEC-C2B8 was shown to deplete mature normal and malignant B cells by:

- binding to the CD20 receptor and inhibiting B cell growth
activating the complement system, resulting in cell lysis via complement-dependent cytotoxicity (CDC)
activating macrophages
recruiting killer cells via antibody-dependent cellular cytotoxicity (ADCC)

IDEC-C2B8 was also shown to induce apoptosis and sensitize drug-resistant tumors to the effects of platinum-based agents, etoposide and ricin. IDEC-C2B8 causes rapid B cell depletion within 24 to 72 hours after infusion, that persists with recovery in 5 to 7 months. It is currently evaluated as second line therapy and in combination with other agents. In March 1996, IDEC announced that it had completed patient accrual for a phase III multicenter (30 institutions) open label, single arm trial of IDEC-C2B8 as monotherapy for the treatment of relapsed low-grade or follicular NHL. IDEC-C2B8 is administered by IV infusion on an outpatient basis over 22 days.

In a phase I/II clinical trial of 47 pretreated patients with relapsed NHL, 37 patients were treated with IV infusion of 375 mg/m^2 (weekly x 4). In 34 evaluable patients with low grade or follicular NHL, use of this regimen resulted in a CR rate of 9%, a PR rate of 41% and an overall response of 50%. The median time to progression was 10 months, with the longest response over 20 months. Therapy was well tolerated (Maloney DG, et al, Proc of ASH 1995, Abs. 205). Interesting results were also reported when this antibody was given in conjunction with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy to patients with low-grade NHL. The overall response rate was 100% (11 CR and 3 PR), with a complete response rate of 79%. Also, four patients known to be positive for bcl-2 prior to therapy were bcl-2 negative after completing the regimen (Czuczman MS, et al, Proc of ASH 1995, Abs. 206). However, these results must be interpreted with caution, because they involved only 14 patients, 75% of whom had not received prior therapy. This high response rate may be due to CHOP therapy alone. However, it is an interesting approach because the two therapies do not have overlapping toxicity, they act by different mechanisms and may have a synergistic effect.

IDEC is also clinically evaluating IDEC-Y2B8, anti-CD20 murine MAb conjugated to ^90Y, for the treatment of relapsed NHL and to ^111In (IDEC-In2B8), for imaging. In a phase I trial using single doses of IDEC-Y2B8, among 17 pretreated patients, there were 4 CRs (28%), 5 PRs (36%), and disease stabilized in 5 patients. Time to progression for the nine responders ranged from 5.9 to 13.4 months. Recommended dose for phase II studies is 40 mCi. Use of ^90Y is deemed superior to ^111In because of its higher energy, pure beta emissions, longer beta path length and shorter half-time (64 hours). Also, ^90Y immunoconjugates may be delivered in the outpatient setting (Grillo-Lopez AJ, et al, Proc of ASH 1995, Abs. 207).
ImmunoGen was granted an exclusive worldwide license from Dana-Farber Cancer Institute (Boston, MA) in May 1981, covering the development of MAb, toxin, and drug immunoconjugates. ImmunoGen has developed several other immunotoxins for hematologic and other malignancies but the company was forced to scale down its activities to focus on Oncolyisin B and to conserve cash. Further development of these products will be undertaken only if the company secures third-party support. Products whose development is on hold include:

- Oncolyisin M, an anti-My9 MAb conjugated to blocked ricin, for ex vivo bone marrow purging
- Oncolyisin CD6, a high affinity anti-CD6 antibody conjugated to blocked ricin, that is a potent anti-
 pan T cell immunotoxin capable of killing cells in an antigen dependent manner; was in phase I clinical
 trials for relapsed T cell malignancies
- Anti-B4-DC1, a small drug immunoconjugate consisting of anti-B-4 MAb linked to a potent synthetic
 small drug effector molecule, DC1; an IND was granted to begin clinical trials; a patent covering
 therapeutic use of analogs and derivatives of DC1, was awarded in December 1995; in preclinical
 studies, median increase in survival of animals treated with anti-B4-DC1 was 170% compared to
 untreated controls, representing six logs of cell kill, compared to 1-3.4 logs of cell kill for conventional

Immunomedics (Morris Plains, NJ) is clinically evaluating a MAb radioconjugate consisting of MAb LL2 linked to either 131I or 245. Various forms of the antibody, murine, humanized or F(ab’)2 fragment, have been evaluated in phase I clinical trials. This MAb immunoconju-
 gate is intended for the treatment of NHL. In two clinical
 trials, 25 patients were treated using different doses of various forms of Immunomedics’ LL2 immunoconjugate
 against NHL. In one of the trials involving low radiation
 doses, 6 of 17 patients with advanced disease showed a therapeutic response. A clinical trial using higher doses is in
 progress.

Medarex (Annandale, NJ) is developing “bipspecific antibodies” (Bispecifics) constructed by fusing two anti-
 body fragments, each of which is specific for a different site. The “trigger” fragment, which is a humanized anti-
 body fragment proprietary to Medarex, is specific for the Fc receptor and binds to, and triggers, a macrophage.
 The “target” fragment, which is licensed to Medarex by Dartmouth University (Dartmouth, NH), is specific for a particular antigen on a tumor cell or a pathogen. Bispecifics are designed to bind to a specific type of tumor cell or pathogen and to a killer cell, triggering the destruction of the target by the killer cell. Medarex is currently developing two therapeutic products, MDX-11, and MDX-22, both designated orphan drugs, for the treat-

Protein Design Labs (PDL; Mountain View, CA), founded in 1986, is developing human and computer-
designed SMART (humanized) MAbs that have a longer half-life and are less immunogenic than traditional
 murine MAb. SMART HuM195, a humanized IgG, version of murine MAb 195 reactive with the early myeloid
 surface antigen CD33, is in multicenter phase II/III USA
 trial, in the treatment of AML, which began in June
 1994. Both conjugated and unconjugated versions of
 M195 have been evaluated. In a clinical study of uncon-
 jugated HuM195 in acute promyelocytic leukemia (APL)
 patients in remission (6 in first and 2 in second remis-
 sion) post retinoid therapy, all patients experienced CR
 lasting from 3+ to 14+ months. Patients received six
doses of the drug (3 mg/m² per dose) twice weekly for
 three weeks. Following this, only patients in first remis-
sion were treated with idarubicin and cytarabine. All
 patients then received monthly maintenance with two
 doses of HuM195 3 to 4 days apart. Side effects were
 manageable; no hematologic toxicity was observed and
 human anti-mouse antibody (HAMA) response was not a
 problem. Using reverse transcription-PCR (RT-PCR), it
 was shown that five of eight patients with RT-PCR-
detectable disease before treatment converted to negative
 after HuM195 therapy (Jurcic JG, et al, ASH95, Abs. 2057).

In September 1995, PDL initiated a phase I clinical
 trial of SMART M195 in Japan in 16 patients with AML.
 According to the study’s protocol, groups of four patients
 are administered one of four dose levels for a total of 7
doses over a period of four weeks. The Japanese clinical
 trial is being sponsored by Kanebo (Osaka, Japan) which
 licensed Asian marketing rights to SMART M195. The
 antibody drug material being used in the study is manu-
factured at PDL’s Plymouth, MN, facility.

Seragen (Hopkinton, MA), using recombinant DNA
techniques, has constructed various tumor-selective
fusion toxins by replacing the native diptheria toxin
receptor-binding domain with one of a variety of
cytokines. The IL-2 receptor-targeted fusion toxin,
DAB-IL-2, is in a 22-center phase III clinical trial in
 cutaneous T cell lymphoma (CTCL) and in phase II trials
 in NHL. In a phase II multicenter dose-escalation trial,
 the drug was associated with a 50-100% reduction in
tumor burden in 12 of 32 CTCL patients. Seven of 10
 CTCL patients, the majority with stage I or II disease,
treated at the University of Alabama (Birmingham, AL)

COPYRIGHT © 1996 NEW MEDICINE, INC. 714. 830. 0448.
experienced CR. DAB389IL-2 is administered intravenously as a daily 15-minute infusion for five days every three weeks, repeated for up to six courses. Under the terms of an agreement entered in 1994, Eli Lilly has exclusive rights, except in certain Asian countries, to IL-2 fusion toxin for the treatment of cancer. Other fusion toxins with potential cancer applications, in preclinical development include IL-6 fusion toxin for multiple myeloma and IL-4 fusion toxin for hematologic malignancies expressing the IL-4 receptor.

Techniclone International (Tustin, CA) has also developed and is clinically evaluating a radioimmunoconjugate, Oncolym, against B cell NHL. Oncolym consists of Lym-1 MAb conjugated to 131I (131I-Lym-1). A multicenter phase III trial of Oncolym which began in

Exhibit 1

Patients with Hematologic Malignancies Treated Annually by Chemotherapy in the USA and Worldwide

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Induction Therapy (#)</td>
<td>Total (%)</td>
<td>Relapsed Patients (#)</td>
<td>Terminal/Mortality (#)</td>
<td>5-year Survivors Rate (%)</td>
<td>BMT/Other (%)</td>
<td>Total Chemo Candidates (#)</td>
</tr>
<tr>
<td>LEUKEMIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytic</td>
<td>11,000</td>
<td>42.8</td>
<td>17,198</td>
<td>5,591</td>
<td>6,400</td>
<td>6,955</td>
<td>63.2</td>
</tr>
<tr>
<td>ALL</td>
<td>3,933</td>
<td>35.8</td>
<td>5,882</td>
<td>2,105</td>
<td>2,057</td>
<td>52.3</td>
<td>733</td>
</tr>
<tr>
<td>B-ALL</td>
<td>3,343</td>
<td>85.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ALL</td>
<td>590</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL</td>
<td>6,403</td>
<td>58.2</td>
<td>10,454</td>
<td>3,842</td>
<td>4,399</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>B-CLL</td>
<td>6,083</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CLL</td>
<td>320</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>664</td>
<td>6.0</td>
<td>921</td>
<td>342</td>
<td>207</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>Myelocytic</td>
<td>11,100</td>
<td>43.2</td>
<td>16,279</td>
<td>6,524</td>
<td>8,400</td>
<td>1,721</td>
<td>15.5</td>
</tr>
<tr>
<td>AML</td>
<td>6,029</td>
<td>54.3</td>
<td>8,496</td>
<td>5,500</td>
<td>327</td>
<td>104</td>
<td>1,411</td>
</tr>
<tr>
<td>CML</td>
<td>3,272</td>
<td>29.5</td>
<td>5,244</td>
<td>2,579</td>
<td>775</td>
<td>23.7</td>
<td>1,005</td>
</tr>
<tr>
<td>Other</td>
<td>1,799</td>
<td>16.2</td>
<td>2,597</td>
<td>324</td>
<td>327</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>Other/unspecified</td>
<td>3,600</td>
<td>14.0</td>
<td>5,302</td>
<td>5,086</td>
<td>5,600</td>
<td>1,030</td>
<td>28.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25,700</td>
<td>100.0</td>
<td>38,779</td>
<td>17,201</td>
<td>20,400</td>
<td>9,843</td>
<td>38.3</td>
</tr>
<tr>
<td>LYMPHOMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>7,800</td>
<td>11.0</td>
<td>9,222</td>
<td>808</td>
<td>1,510</td>
<td>6,150</td>
<td>78.8</td>
</tr>
<tr>
<td>NHL</td>
<td>50,900</td>
<td>71.5</td>
<td>74,573</td>
<td>8,030</td>
<td>23,300</td>
<td>26,468</td>
<td>52.0</td>
</tr>
<tr>
<td>by cell type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Cell</td>
<td>38,175</td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T Cell</td>
<td>1,527</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>null-cell</td>
<td>11,198</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low-grade</td>
<td>11,311</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermediate-grade</td>
<td>21,624</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high-grade</td>
<td>6,321</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>11,644</td>
<td>22.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTIPLE MYELOMA</td>
<td>12,500</td>
<td>17.5</td>
<td>23,682</td>
<td>6,600</td>
<td>10,400</td>
<td>3,463</td>
<td>27.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>71,200</td>
<td>100.0</td>
<td>107,477</td>
<td>15,438</td>
<td>35,210</td>
<td>36,081</td>
<td>50.7</td>
</tr>
</tbody>
</table>

— continued on next page
January 1996, will enroll up to 130 patients with refractory NHL. In a phase II clinical trial of 50 relapsed patients with high-grade NHL, Oncolym treatment resulted in an overall response of 56%. The product is manufactured by Mills Biopharmaceuticals (Oklahoma City, OK). Under an agreement entered in October 1992, Alpha Therapeutic (Los Angeles, CA), a wholly-owned subsidiary of Green Cross (Osaka, Japan), is financing phase III trials and has marketing rights in USA, Asia and certain European countries. In March 1996, Techniclon entered into an exclusive distribution agreement with Biotechnology Development (Miami, FL) in geographic areas not covered by Alpha Therapeutic. Under the agreement Technicleone received a cash payment of $3 million and retains the worldwide manufacturing rights.

University of Minnesota (Minneapolis, MN) investigators, led by Dr. Fatih Uckun, in collaboration with Bristol-Myers Squibb Pharmaceutical Research Institute (Princeton, NJ) researchers, developed a conjugate consisting of the enzyme inhibitor genistein and MAb B43, which targets the CD19 molecule expressed on B cell precursor (BCP) leukemia cells. BCP leukemia is the most

<table>
<thead>
<tr>
<th>Exhibit 1 (continues)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW (NORTH AMERICA, EUROPE* AND JAPAN)</td>
</tr>
<tr>
<td>Induction Therapy (#)</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>LEUKEMIA</td>
</tr>
<tr>
<td>Lymphocytic</td>
</tr>
<tr>
<td>ALL</td>
</tr>
<tr>
<td>B-ALL</td>
</tr>
<tr>
<td>T-ALL</td>
</tr>
<tr>
<td>CLL</td>
</tr>
<tr>
<td>B-CLL</td>
</tr>
<tr>
<td>T-CLL</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Myelocytic</td>
</tr>
<tr>
<td>AML</td>
</tr>
<tr>
<td>CML</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>LYMOPHMA</td>
</tr>
<tr>
<td>HD</td>
</tr>
<tr>
<td>NHL</td>
</tr>
<tr>
<td>by cell type</td>
</tr>
<tr>
<td>B Cell</td>
</tr>
<tr>
<td>T Cell</td>
</tr>
<tr>
<td>null-cell</td>
</tr>
<tr>
<td>by grade</td>
</tr>
<tr>
<td>low-grade</td>
</tr>
<tr>
<td>intermediate-grade</td>
</tr>
<tr>
<td>high-grade</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>MULTIPLE MYELOMA</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

* Excludes the former USSR
common type of childhood cancer and the second most common form of adult acute leukemia. In preclinical studies this agent bound with high affinity to BCP leukemia cells, selectively inhibited CD19-associated tyrosine kinases and induced rapid apoptosis. At dose levels less than one tenth of the maximum tolerated dose (MTD), 100% long-term event-free survival was achieved in the treated animals, compared with zero survival in controls. Treatment was well tolerated with no instances of systemic toxicities (Uckun FM, et al, Science, 10 Feb 1995, 267:886-891). BMS is not developing this agent. Genistein is a naturally occurring protein tyrosine kinase inhibitor that specifically inhibits several receptor and cytoplasmic tyrosine kinases, including p210bcr-abl.

Immunization/Vaccines/Gene Transfer

Another biologic therapy approach, currently being pursued by many developers for most malignancies is immunization. Numerous cancer vaccines are in development based on various immunization approaches including nonspecific immunotherapy (activation of macrophages, natural killer (NK) cells and other nonspecific effectors using microbial or chemical immunomodulators or T cells activated secondarily through macrophages) and specific immunotherapy (activation of specific effector cells and “armed” macrophages using antigenic tumor cells, cell lysates, or extracted tumor antigens); adoptive immunotherapy, involving transfer of immunological cells or informational molecules; and passive immunotherapy, involving transfer of antibodies or antisera, providing exogenous immunity.

Among specific immunotherapy approaches, genetic modification of tumor cells is being used to produce cancer vaccines with more defined biological effects. The two technical approaches to genetically modified human cancer vaccines include ex vivo gene transfer of cytokine and other genes into tumor cells followed by reimplantation, and in vivo gene transfer of major histocompatibility complex (MHC) class I molecules by direct physical incorporation of specific sequences of DNA to elicit responses from the immune system. The MHC-I directed peptide, coded for by the DNA vaccine, is then synthesized and processed intracellularly, as though it originated from a tumor cell. The firm filed INDs in late 1994 for intramuscular administration of Genevac for HIV infection and T cell lymphoma. Clinical trials for these two indications, began in mid-1995 in the USA.

Cytel (San Diego, CA), in collaboration with researchers at Memorial Sloan-Kettering Cancer Center (NY, NY), reported evidence of a human immune response elicited by peptides (fusion proteins) expressed by the bcr-abl oncogene in CML. Such peptides may be used as antigens in vaccines for CML. The t(9;22) translocation encountered in CML cells, encodes one of two chimeric P210ber-abl fusion proteins, comprising products of either the b2a2 or the b3a2 exon junction. These junctional sequences are true tumor specific antigens and may be immunogenic. Although these fusion proteins are located intracellularly, they may be recognized immunologically by T lymphocytes via presentation by MHC molecules. Several peptides were identified that were able to bind with high or intermediate affinity to purified HLA class I molecules. Researchers are now testing the ability of these peptides to elicit, in vitro and in vivo. Transfection with this approach can be expected to be mostly transient, but integration is possible. The recent refinement of this technology into small, portable “gene gun” devices to shoot particles into tumors should help accelerate the application of this approach in clinical trials (Yang NS and Sun WH, Nature Med, [1995] 1:481). One such gene gun, Accell, being developed by Agracetus (Middleton, WI) uses pulses of compressed helium to project microscopic gold projectiles coated with DNA through the skin into tumor cells at almost supersonic speed in a matter of seconds. In June 1995, the Recombinant Advisory Committee (RAC) of the FDA approved initiation of phase I clinical trials with Accell in metastatic colorectal cancer. Other indications include malignant melanoma, T cell lymphoma, and metastatic breast cancer.

Apollon (Malvern, PA), a privately-owned company was founded in 1992, with an initial 33% stake taken by Centocor (Malvern, PA). Apollon is developing vaccines and other products based on its facilitated DNA injection/delivery technology, which involves the intramuscular injection of a bacterial plasmid containing genes encoding pathogenic antigens combined with a facilitator, bupivacaine. Apollon is evaluating Genevac, a naked DNA vaccine that mimics a live attenuated virus. Genevac incorporates specific sequences of DNA to elicit responses from the immune system. The MHC-I directed peptide, coded for by the DNA vaccine, is then synthesized and processed intracellularly, as though it originated from a tumor cell. The firm filed INDs in late 1994 for intramuscular administration of Genevac for HIV infection and T cell lymphoma. Clinical trials for these two indications, began in mid-1995 in the USA.
vaccine for the treatment of B cell lymphoma (Hsu FJ, et al, Proc of ASH 1995, Abs. 1079). This vaccine is composed of tumor idiospecific protein conjugated to a carrier and mixed with an immunologic adjuvant. Nearly 50% of patients treated with this construct mounted an idiotyp-specific immune response. Freedom from progression of disease was prolonged in this group by a median of 4.7 years versus 0.7 years for patients who did not have an immune response.

Vical (San Diego, CA) is developing proprietary technology for the effective administration of polynucleotide and gene-based drug products to deliver therapeutic proteins. In September 1995, Vical announced that it started a phase II clinical trial on Allovectin-7, a gene-based product intended for direct injection into tumor lesions, for treatment of melanoma, lymphoma and kidney, colorectal, and breast cancers. Allovectin-7 contains a gene that encodes a mismatched transplantation antigen (HLA-B7) which, when injected into tumors, causes malignant cells to bear the foreign antigen on their surface. The patient's immune system is then expected to attack and destroy tumor cells expressing the antigen. Allovectin-7 is currently in phase II clinical trial, which commenced in September 1995. The company's other gene-based product for direct injection into tumor lesions, Leuvec tin, contains a gene that encodes IL-2. Vical initiated a phase I/II trial at the Arizona Cancer Center (Tuscon, AZ) and at the Scott and White Memorial Hospital (Temple, TX) in April 1995 to evaluate the safety and biological activity of Leuvec tin in lymphoma patients (also see FO, V1 #2/3, p 54).

Growth factors/Cytokines

Cytokines function as pleiotropic systemic hormones with overlapping actions on many cell types, acting both as agonists and antagonists. Although they are a vital part of the immune response system, they may also be potentially harmful mediators of inflammation and, possibly, tumorigenesis. Therefore, treatments targeting cytokines that are relatively straightforward to design for *in vitro* tests, are difficult to conceptualize in the systemic milieu.

Cytokines have found many applications in the treatment of hematologic malignancies (see FO, V1 # 9 and 10). Growth factors have been used in several cooperative group studies to improve recovery from chemotherapy and increase dose intensity in AML patients. However, a study of granulocyte-macrophage colony-stimulating factor [GM-CSF; molgramostim; Schering-Plough/Novartis (formerly Sandoz)] in elderly patients with AML failed to show improved outcome (Stone R, et al, NEJM, 1995, 332:1671-7). A study of granulocyte colony-stimulating factor (G-CSF) in ALL suggested some benefit in older patients, but did not reach statistical significance (CALGB 9111). A study of 76 AML patients randomized to G-CSF (lenograstim; Chugai/Rhône-Poulenc Rorer) or placebo during induction therapy showed a significant decrease in the time to completion of chemotherapy (39 verses 44 days, p=0.008), but did not show any survival advantage at 20 months (Ottmann OG, et al, Blood, July 15, 1995, 86:444-50).

Immunex (Seattle, WA), however, believes that its recombinant GM-CSF (sargramostim, Leukine) may improve survival in elderly AML patients who experience longer lasting and less tolerated neutropenia after chemotherapy, resulting in higher mortality. Leukine was recommended for approval in April 1995 by FDA's Biological Response Modifiers Committee to stimulate white blood cell production and accelerate white blood cell recovery after induction chemotherapy in AML patients over 55 years-of-age. If approved, Leukine will be the first growth factor commercialized for this indication. Leukine was also approved (in 1991) to accelerate myeloid recovery in autoBMT in hematologic malignancies and, subsequently, to improve survival in BMT failures, and was recommended for approval (in April 1995) in alloBMT. However, the drug failed to gain approval as prophylaxis for neutropenia so that it can compete head on with Amgen's (Thousand Oaks, CA) Neupogen.

Glaxo Wellcome's Wellferon (interferon-α n1, IFN-α n1), prolonged survival of chronic myelocytic leukemia (CML) patients by almost two years compared to standard maintenance therapy. In a multicenter trial, 587 patients with CML in chronic phase were randomized to receive Wellferon or chemotherapy with busulphan or hydroxyurea as maintenance, after initial induction treatment with cytotoxic drugs. The median survival of IFN-α-treated patients was 61 months, compared with 41 months for controls, and 5-year survival was 52% for those on Wellferon, compared to 34% for controls. Although patients positive for the Philadelphia chromosome (Ph+), with cystogenetic responses survived longer, all patients on Wellferon survived longer than controls (Allan NC, et al, Lancet, 1995 June 3, 345(8962):1392-7). Wellferon is marketed in the UK for hairy-cell leukemia (HCL).

NOVEL CHEMOTHERAPEUTICS

Retinoids

Retinoids, derivatives of vitamin A, are natural signals that modulate growth and differentiation of normal and tumor cells and induce apoptosis. For instance, it has been shown that drugs which stimulate certain intracellular receptors (IRs) for retinoids induce apoptosis in susceptible tumor cells. Retinoids also induce tumor cells to differentiate into mature cells which do not proliferate abnormally. The degree of differentiation and apoptosis induced by retinoids depends on cell type and differs among retinoid agents. To date, signal transduction pathways involved in retinoid-induced differentiation have not been categorically described. For instance, differentiation of HL-60 cells by all-trans-retinoic acid (ATRA) was shown to be directly mediated by down-regulation of the serine protease myeloblastin (mnb). A 28-kDa heat
shock protein (hsp28), previously linked to differentiation of normal and neoplastic cells including HL-60, may be targeted by mbn. Identifying hsp28 as a substrate of mbn strongly suggests that hsp28 may be a key component of the ATRA signaling pathway involved in regulating cell differentiation (Spector NL, et al, Journal of Biological Chemistry, 1995 Jan 20, 270(3):1003-6).

Several retinoids are being developed both for cancer treatment and prevention. Two naturally-occurring endogenous, biologically active retinoids are ATRA and 9-cis-retinoic acid. Biologically active chemical analogs of retinoids with activity in leukemia, have also been synthesized. One such analog, 13-cis-retinoic acid (isotretinoin) supplied by Roche Laboratories (Nutley, NJ) as Acutane for the treatment of severe acne, induced durable responses in juvenile CML. In a pilot study, among ten children with CML treated by orally-administered isotretinoin (100 mg/m² as a single daily dose), two experienced CRs, three PRs, one minimal response and disease progressed in four. Median response duration was 37 months (range 6-83 months) (Castleberry RP, et al, NEJM, Dec 22, 1994, 331(25): 1680-1684).

In November 1995, the FDA approved Roche’s Vesanoid, a version of ATRA (tretinoin) for induction therapy of APL (see FO, V1 #9, p 211). ATRA induces granulocyte differentiation in leukemia cells resulting in CR in up to 90% of APL patients with rapid amelioration of the bleeding syndrome. However, orally-delivered ATRA does not maintain adequate plasma and intracellular levels over an extended period of time, in spite of standard dose delivery and even if the dose is increased. ATRA induces its own catabolism in vivo by causing an increase in cellular proteins that sequester the compound in the cytoplasm. Low plasma ATRA levels correlate with poor response. Therefore, ATRA can achieve a high remission rate in patients with APL but not a cure, requiring combination with chemotherapy. Also, ATRA is associated with respiratory syndrome, a serious side effect occurring in about 25% of patients.

One of the mechanisms by which retinoids appear to regulate cellular differentiation and proliferation is activation of the retinoic acid receptor (RAR) and the retinoid X receptor (RXR) in the nucleus of cells. Various retinoids are in development based on the premise that their clinical attributes are determined by their receptor binding activity. ATRA binds only to RAR. Retinoids with a different receptor-binding profile and various formulations of ATRA that may be superior to oral ATRA in the treatment of APL and other hematologic malignancies, are in development.

Allergan Ligand Retinoid Therapeutics (ALRT; San Diego, CA), was formed by Ligand Pharmaceuticals and Allergan (Irvine, CA), via issue of 3,250,000 shares of common stock plus warrants at $10 per share in June 1995. ALRT is capitalized at $100 million, with Allergan adding $50 million and Ligand $17.5 million to the proceeds from the offering. ALRT succeeds a joint venture between the two companies set up to develop retinoid compounds for the treatment of cancer and skin and eye diseases.

ALRT’s lead compound, LGD-1057 (a chemically synthesized version of 9-cis retinoic acid), now referred to as ALRT-1057, is a high-affinity ligand for both RARs and RXRs. In a phase I trial in relapsed patients with APL who were previously treated with ATRA, seven patients were treated with ALRT-1057 at daily oral doses ranging from 30 to 230 mg/m². The mean terminal plasma half-life of ALRT-1057 (1.3 hours) changed very little after several weeks of dosing and peak plasma concentrations equaled or exceeded concentrations that were effective against retinoid-sensitive cells in vitro. Despite favorable pharmacokinetics, only one patient achieved CR. Although ALRT-1057 may not induce its own catabolism to the same degree as ATRA, it was still unable to overcome clinically acquired resistance to ATRA in APL (Miller WH Jr, et al, Blood, 1995 Jun 1, 85(11):3021-7).

In phase I/IIa trials conducted at Memorial-Sloan Kettering Cancer Center (NY, NY), oral ALRT-1057, administered at daily doses as high as 230 mg/m², exhibited excellent bioavailability with drug plasma levels proportional to the administered dose over a broad range. A topical version of this drug is in phase II trial for the treatment of Kaposi’s sarcoma and mycosis fungoides. A phase IIb clinical trial with oral ALRT-1057 in NHL is being conducted at the M. D. Anderson Cancer Center.

Aronex Pharmaceuticals (The Woodlands, TX) is developing Tretinoin™, an intravenous liposomal formulation of ATRA. Aronex obtained exclusive development and marketing rights to liposome-encapsulated ATRA from M. D. Anderson Cancer Center. The IV liposomal formulation is being developed to sustain therapeutic levels of ATRA in the circulation, not attainable with the oral drug. In a phase I clinical trial, two of five patients with APL, achieved remissions after treatment with Tretinoin™. Phase I trials also demonstrated that the drug could be safely delivered at doses sufficient to produce activity against APL. In September 1995, Aronex initiated a phase II trial of Tretinoin™ in patients with APL who have relapsed following prior therapy with either oral ATRA or other chemotherapy. The multicenter study, which will enroll 80 patients at 20-30 centers, is designed to assess the utility of the company’s agent in inducing and maintaining remission in patients who have relapsed following prior therapy. The product also recently entered phase II/III clinicals in Kaposi’s sarcoma in collaboration with Genzyme.

Leo Pharmaceutical Products (Ballerup, Denmark) is preclinically evaluating a vitamin D3 derivative, KH 1060, which is 10 times more potent than 9-cis-retinoic acid in inhibiting clonal proliferation of APL (NB4) cells.
Incubation of the cells with a combination of KH 1060 and 9-cis-retinoic acid decreased expression of apoptosis-suppressor protein bcl-2 from 100% in wild type cells to <2%; expression of apoptosis-promoter protein bax increased after incubation with either KH 1060, 9-cis-RA, or a combination of both, from 50% in controls to 70%, 75% and 90%, respectively. Apoptotic death of NB4 cells was observed after incubation with either analog and increased to >50% of cells with the combination. Combining retinoids acting by putatively different mechanisms may prove an effective strategy in the treatment of APL and AML (Elstner E, etal, ASH95, Abs. 1728).

Ligand Pharmaceuticals (San Diego, CA), in addition to its involvement with ALRT, is also pursuing its own in-house development of retinoids. It is currently clinically evaluating LGD-1069 (3-methyl-TTNEB) that binds selectively to RXR and may exhibit a pattern of activity and/or toxicity distinct from other retinoids. The oral formulation of the drug, Targretin Oral, was well tolerated in a phase I trial in 33 patients with various malignancies. Also, according to interim results reported in January 1996 from a phase I/II controlled multicenter trial of Targretin Topical in CTCL or mycosis fungoides, 33% of 27 patients experienced a response.

Structural modifications of LGD-1069 have resulted in the identification of increasingly potent retinoids with >1000-fold selectivity for RXRs. The most potent and selective of the analogs, LG100268, is being used to investigate RXR-dependent biological pathways. Studies indicate that to date induction of programmed cell death and trans-glutaminase in human leukemic myeloid cells is dependent upon activation of RXR-mediated pathways (Boehm MF, etal, Journal of Medicinal Chemistry, 1995 Aug 4, 38(16):3146-55).

Sparta Pharmaceuticals (RTP, NC) received FDA clearance in late 1995 to begin a 30-patient phase I clinical trial with the retinoid compound, RII retinamide, in myelodysplastic syndrome (MDS). In clinical trials conducted in China in over 600 patients, RII retinamide elicited an overall response rate of 68%. Sparta has been granted exclusive worldwide (outside China) rights to the patents from the Institute of Materia Medica (Beijing, China) which has been concentrating on the synthesis and characterization of novel, potentially non-teratogenic retinoid compounds.

Topoisomerase Inhibitors/
Naturally-derived Alkaloids

Both topoisomerase I and II inhibitors have been tested in hematologic malignancies. Several topoisomerase I inhibitors that block DNA synthesis, are in development (see FO V1 #2/3, p 56; #4, p 111), including various water-soluble and insoluble derivatives of the plant alkaloid camptothecin, administered parenterally or orally. Two water-soluble derivatives, topotecan (SmithKline Beecham) and irinotecan (Yakult Honsha and Pharmacia & Upjohn) are in late stage development for various cancers and another, the totally synthetic camptothecin analog GG-221 (Glaxo Wellcome), is in phase II clinical trials in colon and lung cancer. The potential role of topoisomerase I inhibitors in the treatment of hematologic malignancies has not been established. For instance, although topoisomerase I is elevated in the lymphocytes of chronic lymphocytic leukemia (CLL) patients and exposure of cells from these patients to topotecan in vitro at 2 mM resulted in detectable protein-DNA cross-linking, this effect was not seen in 12 CLL patients who received a bolus dose of 2 mg/m², and no remissions were noted (O’Brien S, etal, Cancer, 1995 Mar 1, 75(5):1104-8).

Among topoisomerase II inhibitors clinically evaluated in hematologic malignancies is sobuzoxane, an analog of ICRF-159 (MST-16, Perazolin), in development by Zenyaku Kogyo (Tokyo, Japan), under a collaboration with the Institute of Materia Medica (Shanghai, China). The drug is an orally-active bimolane analog that inhibits topoisomerase II without formation of a cleavable DNA-protein complex. Overall response rate in phase II trials was 29.7% in malignant lymphoma and 46.2% in acute adult T cell leukemia; dose-limiting factor was leukopenia (Tsukagoshi, S, Gan To Kagaku Ryoho Japanese J. of Cancer and Chemotherapy, 1994 June, 21(7):1089-97).

Cephalostatins, a group of thirteen marine-derived alkaloids, have shown potent cytotoxic activity at very low concentrations in myeloid leukemia cells. They act by a unique mechanism, possibly related to interaction with endogenous steroid receptors, induce apoptosis and exhibit significantly higher time- and dose-cytotoxicity for malignant myeloid compared to normal marrow progenitor cells (Lilly M and Pettit GR, ASH95, Abs. 2056).

Harringtonine (HT) and homoharringtonine (HHHT) are plant alkaloids isolated from the bark of the evergreen tree Cephalotaxus hainanensis Li in the 1970s. In preclinical tests one of the mechanisms of these drugs against tumor cells was apoptosis (Li L, etal, Yao Hsueh Hsueh Pao Acta Pharmaceutica Sinica, 1994, 29(9):667-72). Efficacy with HHHT was reported in relapsed and de novo AML and in CML. HHHT, currently in clinical trials in the USA, is supplied by the National Cancer Institute (NCI; Bethesda, MD) under an agreement with the Institute of Materia Medica of the Chinese Academy of Medical Sciences (Beijing, China).
In a phase II trial, HIHT was administered at a dose of 5 mg/m² by 24-hour continuous infusion daily for 9 days, to 28 patients with MDS (16) and MDS evolving to AML (12). CR was achieved in 7 patients and PR in one patient, for an overall response rate of 28% (8/28). Median duration of CR was 7 months (range 2-10). Significant universal myelosuppression resulted in a high incidence of induction deaths (13/28) due to neutropenia-related infections. HIHT given in this dose and schedule demonstrated limited activity in MDS and MDS/AML, and was associated with prolonged pancytopenia and marrow hypoplasia in many patients (Feldman EJ, et al., Leukemia, 1996 Jan, 10(1):40-2). Administration of HIHT at a lower dose or in combination with hematopoietic growth factors is associated with significantly lower toxicity. Among 58 evaluable patients with Ph¹+ CML in late chronic phase (time from diagnosis to therapy longer than 12 months) who were treated with a continuous infusion of HIHT at a daily dose of 2.5 mg/m² for 14 days for remission induction, and for 7 days every month for maintenance, 42 (72%) achieved CR and 9 (16%) PR. Significant myelosuppression occurred in 39% of induction courses and 9% of maintenance courses. Fever or documented infection was present in 26% of induction courses but in only 8% of maintenance courses (O’Brien S, et al., Blood, 1995 Nov 1, 86(9):3322-6). HIHT is currently under phase II clinical trials in combination with interferon and cytarabine (ara-C) in CML.

OLIGONUCLEOTIDE-BASED DRUGS

Oligonucleotide-based therapeutics are being developed for both in vivo and ex vivo applications in hematologic malignancies. In ex vivo approaches oligos are used to purge bone marrow for autoBMT. In vivo applications of oligos are in very early stages of development. Although elegant in theory, oligonucleotide-based therapy still faces a lot of hurdles regarding uptake, stability and dosing to achieve effectiveness.

Oligonucleotides, however, may play a role in the treatment of most hematologic malignancies associated with identifiable aberrant production of certain proteins. For instance, oligos specific for IL-10, a potent stimulator of growth of neoplastic B lymphocytes, may be effective against CLL. B-1 cells derived from a murine model of CLL produce significantly higher levels of IL-10 mRNA than normal B-1 or B cells. IL-10 may act as an autocrine growth factor for malignant B-1 cells. Adding antisense oligodeoxynucleotides specific for IL-10 mRNA dramatically inhibited growth of leukemia B-1 cells in a time and dose dependent manner but did not affect control cell lines whose growth does not depend on IL-10. Antisense therapy, targeted at the 5' region of the IL-10 mRNA, inhibited malignant B-1 cell proliferation and, also, IL-10 production by malignant B-1 cells. Because endogenous IL-10 gene activation is critical for B-1 cell expansion, inactivation of the endogenous IL-10 gene by antisense rather than extracellular regulation of IL-10 may inhibit malignant growth (Peng B, et al., Leukemia Research, 1995 Mar, 19(3):159-67).

In March 1995, researchers at Kyoto University in Japan announced that they successfully blocked the production of hsp70 in leukemia cells, using antisense RNA. About 80% of malignant cells stopped dividing and underwent apoptosis within 100 hours after introduction of antisense RNA. Expression of hsp70, and also hsp90 and hsp60, is significantly elevated in the circulating cells of patients with AML compared with cells from CML patients and with normal peripheral blood mononuclear cells. Mononuclear cells from leukemic patients exhibit a heterogenous pattern of hsp expression, differing between patients, cells from individual patients, and hsp proteins. It is possible that hsp expression relates to the differentiation state or proliferative potential of these leukemic cells (Chant ID, British Journal of Haematology, 1995 May, 90(1):163-8).

Genta (San Diego, CA), is constructing antisense oligonucleotides (Anticode G3139) targeted against bcl-2 mRNAs in an attempt to reverse the chemoresistance observed in cancer cells with activated bcl-2. These oligonucleotides were found to decrease the level of Bcl-2 in human cultured cells in preclinical studies. In animal models, one of these oligonucleotides was found to inhibit the growth of a drug-resistant human colon tumors in nude mice, while a control oligonucleotide had no effect. Similar studies have also been conducted by Finbarr Cotter, MD, at the Institute of Child Health (London, UK). In these studies, an anti-bcl-2 oligonucleotide was shown to cure lymphoma-like disease induced by the injection of human B cell lymphoma cells in severe combined immunodeficient (SCID) mice (Cotter, FE, et al., Oncogene, 1994 Oct, 9(10):3049-55). In November 1995, Genta initiated a phase I/II clinical trial in patients with drug resistant follicular lymphoma at the Royal Marsden Hospital (London, UK), in collaboration with the Institute of Cancer Research. Chugai Pharmaceutical (Tokyo, Japan) has the option to license worldwide marketing rights to this potential lymphoma therapy if it decides to fund its further development. Genta's other antisense compound, G-1128, failed to show effectiveness in a phase I clinical trial conducted at M. D. Anderson Cancer Center, for ex vivo purging of leukemic cells for autoBMT in CML. G-1128 targeted the bcr-abl gene product [bcr-abl results from the t(9;22) abnormality which translocates the breakpoint cluster region (bcr) of chromosome 22 to the abl oncogene of chromosome 9, resulting in Ph¹]. One of the problems of targeting bcr-abl is the fact that most primitive CML cells do not express this protein. A more appropriate target, currently under evaluation may be c-myb protooncogene.

Lynx Therapeutics (Hayward, CA), a private company established in 1992, is developing antisense-based cancer therapies targeting the p53 and myc oncogenes. In 1993, Lynx completed a phase I clinical trial of LR-
3523, a 20-mer phosphorothioate oligodeoxynucleotide analog targeting p53 in the treatment of acute AML and MDS. The drug, administered as a 10-day continuous IV infusion (0.05 mg/kg/hr), did not cause any serious toxicity but higher doses will be necessary to investigate efficacy. Lynx is also conducting a phase I dose-escalation study of LR-3001, a 24-mer phosphorothioate antisense to c-myc for treatment of Ph+ CML in accelerated phase of blast crisis. This study which uses repeated courses of 7-day IV infusion of this agent, began in December 1994 at the University of Pennsylvania (Philadelphia, PA). LR-3001 was preclinically evaluated in SCID mouse models of human CML and malignant melanoma, and is also under investigation for use with autoBMT in CML. In a phase I clinical trial, begun in May 1994, bone marrow of CML patients not eligible for alloBMT, was purged ex vivo with LR-3001 and cryopreserved. This purged marrow was then re-infused into patients who had undergone myeloablative therapy. One of four evaluable patients experienced a durable cytogenetic response. Lynx is also studying the in vivo efficacy of a 26-mer phosphorothioate oligonucleotide targeted against a bcr-abl breakpoint junction for the treatment of CML (Skorski T, et al, PNAS USA, May 1994, Vol. 91, pp. 4504-4508.). These experiments are being extended to include combination therapies with bcr-abl and either conventional drugs or other antisense agents.

RGene Therapeutics (The Woodlands, TX), established in March 1994, is preclinically evaluating RGA-1512, an antisense oligodeoxynucleotide (nucleic acid methylphosphonate) delivered by a liposomal vector, being developed for ex vivo (bone marrow purging) and in vivo Ph+ CML therapy. *In vitro* studies, RGA-1512 inhibited growth of CML cells. RGene has exclusive rights to RGA-1512, based on work by collaborators at the M. D. Anderson Cancer Center/University of Texas, the University of Pittsburgh, the University of Tennessee (Memphis, TN) and Aronex Pharmaceuticals. RGene has also secured, via an agreement with Aronex Pharmaceuticals, exclusive worldwide rights to the University of Tennessee’s patented cationic liposome formulations for all applications in cancer and sepsis-related infectious disease. RGene is developing both lipid and non-lipid based delivery systems for in vivo gene therapies.

OTHER AGENTS

AntiCancer (San Diego, CA) is developing ONCase (AC9301; Methionase), a drug that targets a metabolic defect found in tumor but not normal cells (also see FO, V1 #1, pp 18 & 19). AntiCancer reported that recent in vitro screening of the NCI’s organ specific human tumor cell line collection has suggested that ONCase may be applicable to all tumors, including hematologic malignancies. As of late 1995, ONCase was in phase I clinical trials. In treated patients, the level of methionase declined from 100 mM to 10 mM without any toxic effects noted. In late 1995 AntiCancer entered into an agreement granting Shionogi (Osaka, Japan) the rights to co-develop and exclusively market ONCase in Japan but retained the remaining worldwide rights.

BioCryst Pharmaceuticals (Birmingham, AL) is evaluating topical BCX-34, a small molecule inhibitor of purine nucleoside phosphorylase (PNP), in the treatment of CTCL. BCX-34 was granted orphan drug status in October 1993. In September 1995, the company announced favorable results from a completed 6-month open-label phase II clinical trial of BCX-34. Among 24 patients with stage I/IIA CTCL, seven patients achieved CR, two were clinically free of disease and nine achieved PR for an overall response rate of 18 (75%). The study, being conducted at the University of Alabama and Washington University (St. Louis, MO), was extended for another six months to treat 13 additional patients. A double-blind, randomized, placebo-controlled multicenter phase III clinical trial with a 1% drug concentration of BCX-34 for the treatment of 90 early-stage CTCL patients, was also initiated in late 1995. BioCryst is also evaluating an oral formulation of BCX-34 or the treatment of CTCL and T cell leukemia. In a phase I clinical trial involving three patients with stage IB and IIB CTCL, who were administered both oral and IV formulations, the oral drug demonstrated bioavailability in excess of 76%. Phase I/II clinical trials with this agent began in January 1996.

DepoTech (La Jolla, CA) is developing DepoCyt, a proprietary DepoFoam formulation of ara-C. Interim results, announced in August 1995, based on 22 evaluable patients with neoplastic meningitis arising from solid tumor metastasis participating in a phase III clinical trial, which began in April 1994, showed increased response rate and extended survival times for DepoCyt versus standard therapy (MTX). Neoplastic meningitis is a form of cancer metastatic to the meninges (the soft tissue surrounding the brain and spinal cord) arising from primary cancers. DepoCyt is being developed in collaboration with Chiron (Emeryville, CA).

Mitotix (Cambridge, MA) is developing small molecular weight inhibitors of cyclin-dependent kinases (cdks), a family of enzymes that coordinate the cell division cycle, that may prove useful in the treatment of lymphoma. Periodic activation of cdks requires their association with proteins called cyclins, and is also controlled by post-translational modifications (phosphorylation/dephosphorylation) and by naturally occurring cdk inhibitors. Alterations of cdk pathways have been shown to correlate with cell proliferation associated with cancer. Cdk inhibitors are expected to selectively block this proliferation of cancer cells. The company’s initial lead program focuses on cdk4/cyclin D1 whose alterations have been observed in many cancers. Cyclin D1, itself the product of an oncogene, is overexpressed in esophageal, breast, and colon cancers and lymphomas. Mitotix is using screening procedures to identify small
molecule compounds that selectively inhibit the cdk4/cyclin D1 complex by mimicking the function of certain oncoproteins, or by directly blocking the active site of the enzyme. The company is using structure-based drug design and combinatorial chemistry to construct potential lead candidates. In late 1995, Mitotix entered into a collaborative agreement with DuPont Merck Pharmaceuticals (Wilmington, DE) to develop and commercialize various cdk inhibitors, under development by Mitotix including cdk4/cyclin D1 inhibitors, and new agents identified using DuPont Merck's compound library, for the treatment of cancer. Under the terms of the agreement, DuPont Merck made an initial payment of $17 million and may invest a total of $55 million, in the form of equity and milestone payments. Mitotix will also receive royalties on worldwide product sales. In exchange, DuPont Merck obtained exclusive worldwide rights to commercialize cdk4-based therapeutics and radiopharmaceutical diagnostics. Mitotix retains the rights to certain cdk targets for non-cancer indications and to development of gene therapy and/or antisense approaches using such targets. Mitotix also retains rights to certain diagnostic applications (oncogene typing) and has an option to co-promote, in the USA, any agents resulting from the collaboration. Agents included in the agreement, in addition to inhibitors of cyclin D1, are inhibitors of cyclin E, and mimetics of tumor suppressor gene, p16, present in many solid tumors. Mitotix obtained exclusive rights to cyclin D1 and p16 from Cold Spring Harbor Laboratory (Cold Spring Harbor, NY) and exclusive rights to cyclin D1 patent applications from Massachusetts General Hospital (Boston, MA). In a separate agreement, Mitotix and DuPont Merck will also co-operate in a research project to develop inhibitors of the ubiquitin-mediated degradation of p53, as anticancer agents.

MEETING COVERAGE

ADVANCES IN BREAST CANCER TREATMENT

A REPORT FROM THE SIXTH INTERNATIONAL CONGRESS ON ANTI-CANCER TREATMENT (ICAT), PARIS, FRANCE, FEBRUARY 6-9, 1996

DETECTION OF ANGIogenesis

Angiogenic activity appears to be a prognostic factor in early-stage breast cancer. Although early-stage breast cancer has a better prognosis in the absence of node involvement, 30% of node-negative patients will die of their disease. Well-established factors such as tumor size, histoprognostic grade, and negative hormone receptor status, may help identify women with poor prognosis who may benefit from adjuvant therapy. However, even with adjuvant therapy, some patients relapse. Since angiogenesis is necessary for tumor growth, tumor microvessel count (TMC) is becoming a new indicator for node-negative breast cancers and may predict their clinical outcome. Methodology to carry out TMC is delineated in Exhibit 3.

To test this hypothesis, tumor angiogenic activity was evaluated in 255 node-negative breast cancer patients who underwent surgery between 1979 and 1994 and who did not receive adjuvant therapy. Mean age of these women was 59 years; 24% were premenopausal; tumor size was greater than 2.0 cm in a third of the patients, and receptor status was ER+ PR+ (57%), ER- PR- (11%), ER+ PR- or ER- PR+ (32%). Within a median follow-up of 157 months, there were 86 relapses (32 metastases, 32 local relapses and 22 local plus distant relapses) and 41 deaths. Mean TMC was 94 and median TMC was 86; the range was between 28 and 348. Patients whose tumors had fewer than 69 microvessels achieved statistically significant longer disease-free intervals, but their survival curves were not different. Use of TMC may be of considerable value in helping select patients who may respond to angiogenesis inhibition (Namer M, etal, Abstracts of the 6th ICAT, Pg 68/#110).

Parvis Gamagami, MD, and associates at the Breast Center (Van Nuys, CA) demonstrated, based on a retrospective review of mammograms performed up to 13 years before cancer was diagnosed, that angiogenesis proceeded 90% of nonpalpable and 100% of palpable breast lesions. Also, it appears that tumor angiogenesis gives rise to hot spots in the breast before any signs of cancer are present. This observation may resurrect the application of thermography in breast cancer diagnosis and screening. Dr. Gamagami's group is currently evaluating thermography as a guide for biopsy. Angiogenesis as a diagnostic or disease monitoring approach is still in its infancy and rather controversial. For a comprehensive review of angiogenesis in cancer diagnosis and therapy, including an exhaustive database of angiogenesis inhibitors under development, see FO, V1 #7/8, pp 185-199.

CHEMOTHERAPY

Primary Medical Treatment of Operable Breast Cancer

Primary medical treatment offers good local and systemic control of operable breast cancer. Furthermore, decrease in tumor size, both in the breast and in the nodes, may obviate surgery in about one third of treated patients. If, and when, surgery is required, tumor excision is possible most of the time, allowing a non-mutilating approach. Thromboangiogenesis is a diagnostic or disease monitoring approach. Although angiogenesis is still in its infancy and rather controversial, for a comprehensive review, see FO, V1 #7/8, pp 185-199.

Primary medical treatment offers good local and systemic control of operable breast cancer. Furthermore, decrease in tumor size, both in the breast and in the nodes, may obviate surgery in about one third of treated patients. If, and when, surgery is required, tumor excision is possible most of the time, allowing a non-mutilating approach to be used in up to 90% of these women, even for some tumors not completely sterilized by chemotherapy or others initially greater than 5.0 cm in diameter.

Over a four-year period, among 258 women with mainly T2 and T3 breast cancers treated by a chemotherapy regimen incorporating doxorubicin (60 mg/m²) and cyclophosphamide (600 mg/m²) for at least
Exhibit 2
Novel Agents in Development for the Treatment of Hematologic Malignancies

<table>
<thead>
<tr>
<th>Primary Developer/ Affiliate(s)</th>
<th>Generic Name/ Number/Brand Name</th>
<th>Drug Type/Target/ Mechanism/Delivery</th>
<th>Status/Location/ Indication/</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimidox (3,4,5-trihydroxy- benzohydroxamidoxime)</td>
<td>Inhibitor of ribonucleotide reductase (RR), an enzyme linked with malignant transformation and tumor cell growth</td>
<td>Preclin/Europe/ APL</td>
<td></td>
<td>Szekeres T, etal, Blood, 1994 Dec 15, 84(12):4316-21</td>
</tr>
<tr>
<td>Allergan Ligand Retinoid Therapeutics (ALRT)</td>
<td>9-cis-retinoic acid/ ALRT-1057, LG-1057, LGN-1057, LGD-1057</td>
<td>Chemically synthesized retinoid analog/binds to both retinoic acid receptors (RARs) and retinoid "X" receptors (RXRs)/ inhibits cell proliferation and induces apoptosis and cell differentiation/PO</td>
<td>Phase IIb (9/95)/USA/ APL</td>
<td>Also topical formulations for CTCL; LGD-1057 analogs are also being developed</td>
</tr>
<tr>
<td>American Home Products (Lederle)</td>
<td>Eniloplatin/CL-287110</td>
<td>"3rd generation" platinum complex</td>
<td>Phase I/USA/ leukemia, lymphoma</td>
<td></td>
</tr>
<tr>
<td>Anagen (Synergen)</td>
<td>Anakrina, interleukin-1 receptor antagonist (IL-1ra or IRAP)/Antril</td>
<td>Recombinant non-glycosylated IL-1 receptor antagonist expressed in E. coli/ competitively inhibits the biological activities of IL-1</td>
<td>Phase I/II/USA/CML</td>
<td></td>
</tr>
<tr>
<td>AntiCancer/Shionogi (Japan)</td>
<td>ONCase/AC93011/ Methionase</td>
<td>Targets a metabolic defect found in tumors but not normal cells</td>
<td>May have application in hematologic malignancies</td>
<td>Phase I clinical trials (10/95)/USA</td>
</tr>
<tr>
<td>Aronex Pharmaceuticals/ M. D. Anderson Cancer Center (licensor)</td>
<td>All-trans retinoic acid, (ATRA)/AR-623/Tretinoin</td>
<td>Retinoid/liposomal formulation/IV</td>
<td>Phase II (9/95)/ USA/APL</td>
<td>Also in phase II/III in Kaposi’s sarcoma in collaboration with Genzyme</td>
</tr>
<tr>
<td>BioCryst Pharmaceuticals</td>
<td>BCX-34</td>
<td>Small-molecule inhibitor of purine nucleoside phosphorylase (PNP)/PO</td>
<td>Phase I/II(1/96)/USA/ T cell leukemia</td>
<td>A topical formulation (orphan drug) is in phase III (9/95) clinical trials for CTCL</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>Etopophos, etoposide phosphate/BMY-40481</td>
<td>Water-soluble prodrug of etoposide/PO</td>
<td></td>
<td>NDA 6/94/USA nscl and other cancers; more soluble; less preparation is needed for dosing (see FO,V1 #4)</td>
</tr>
<tr>
<td>Byk Gulden</td>
<td>Dexniguldipine/ B859-035, B895-35</td>
<td>R-enantiomer of the calcium antagonist niguldipine/Ca2+ entry blocker inhibits calmodulin and PKC; potent modulator of P-gp multidrug resistance/PO</td>
<td>Phase II/Germany/ MDS, AML, CML, multiple myeloma</td>
<td>Also see FO,V1 #5, p 129</td>
</tr>
<tr>
<td>Celltech/ American Home Products (American Cyanamid)</td>
<td>CCP-771, anti-CD33 MAb</td>
<td>rhMAb linked to calichaemicin/ binds to CD33, a specific antigen present on myeloid progenitor cells/IV</td>
<td>Phase II (6/95)/USA/AML</td>
<td></td>
</tr>
<tr>
<td>Coulter</td>
<td>Anti-B1 MAb conjugated to 131I</td>
<td>MAB-131I radioimmunocjugate/ directed against CD20/IV</td>
<td>Phase III/USA/B cell lymphoma; phase II/ USA/B cell lymphoma in conjunction with BMT</td>
<td>— continued on next page —</td>
</tr>
<tr>
<td>CytRx/Cremophor EL/CRL-1336, CRL-1337</td>
<td>Solubilizing agent; chemosensitizer/reversible inhibitor of P-gp/IV</td>
<td>Phase I (b10/94)/USA/relapsed or refractory acute leukemia, multiple myeloma</td>
<td>Also see FO.VI #5, p 129</td>
<td></td>
</tr>
<tr>
<td>DepoTech/Chiron</td>
<td>Cytarabine (ara-C) formulation/DTC-101/DepoCyt</td>
<td>DepoFoam formulation of cytarabine/intra-CSF</td>
<td>Phase III/USA (b3/94); Canada (b10/94)/meningeal leukemia</td>
<td></td>
</tr>
<tr>
<td>Eisai</td>
<td>E-7010</td>
<td>Sulfonamide/inhibits tubulin polymerization/PO, IV, IP</td>
<td>Phase I/Japan</td>
<td></td>
</tr>
<tr>
<td>Genta</td>
<td>Anticode G3139</td>
<td>Antisense oligonucleotide/binds to mRNA of bcl-2 and down-regulates production of BCL-2; induces apoptosis/IV</td>
<td>Phase I (b11/95)/UK/follicular NHL</td>
<td>Chugai has option to license worldwide marketing rights</td>
</tr>
<tr>
<td>Genta/M.D. Anderson Cancer Center</td>
<td>Anticode oligonucleotides, anti-bcr-abl/G-1128</td>
<td>Oligonucleotide/binds to mRNA produced by the aberrant Ph1 chromosome and prevents cell proliferation/ex vivo</td>
<td>Phase I/II/USA/CML</td>
<td>In combination with chemotherapy; Chugai has option to license worldwide marketing rights</td>
</tr>
<tr>
<td>Glaxo Wellcome/Cambridge U (UK); developer): BTG (licensor)</td>
<td>Campath-1H</td>
<td>Humanized MAb/binds to CDW52 on lymphocytes/causes cell lysis</td>
<td>Phase II (discontinued 9/94)/CLL</td>
<td></td>
</tr>
<tr>
<td>Glaxo Wellcome/Cancer Research Campaign</td>
<td>1069C85</td>
<td>Synthetic tubulin binder/inhibits microtubule activity/IV, PO</td>
<td>Phase I/II/USA/NHL</td>
<td></td>
</tr>
<tr>
<td>Hoechst Marion Roussel</td>
<td>28,314</td>
<td>Oral delivery of enzyme-based therapeutics/treatment adjuvant</td>
<td>Phase I/II/USA/leukemia</td>
<td></td>
</tr>
<tr>
<td>Ibex (Continental Pharma Cryosan)/McGill U</td>
<td></td>
<td></td>
<td>Research/Canada/ALL</td>
<td></td>
</tr>
<tr>
<td>ICN Pharmaceuticals/Indiana Medical School, M.D. Anderson Cancer Center, NCI (NIH), Warner-Lambert</td>
<td>Tiazofurin riboxamide, TCAR, tiazol/CI-909, CPD-5825, ICN-4221, NSC-286193/Tiazole</td>
<td>Inosine monophosphate dehydrogenase inhibitor/depletes metabolites of the guanylate biosynthetic pathway/IV</td>
<td>Phase III/USA/leukemia</td>
<td>Responses observed in blast cells of treated patients include chemotherapy, induced differentiation, and down-regulation of c-Ki-ras and c-myc oncogenes (Weber G, etal, Pharmacy World and Science, 1994 Apr 15,16(2):77-83)</td>
</tr>
<tr>
<td>IDEC Pharmaceuticals/Genentech (ww rights abroad, co-promote in USA)</td>
<td>IDEC-C2B8 MAb; pan B MAb</td>
<td>Anti-lymphoma chimeric MAb/targets CD20 antigen expressed on mature and malignant B cells/depletes such cells, binds complement and effects ADCC/IV</td>
<td>Phase III/USA (b4/95)/B cell NHL (low-grade follicular); preclin/USA/CLL</td>
<td></td>
</tr>
<tr>
<td>IDEC Pharmaceuticals</td>
<td>IDEC-Y2B8 yttrium conjugate</td>
<td>Anti-CD20 MAb coupled to 90Y</td>
<td>Phase I/USA/B cell NHL</td>
<td>Genentech has option</td>
</tr>
<tr>
<td>Ilex Oncology</td>
<td>Aminopterin (AMT)</td>
<td>Purified and reformulated AMT</td>
<td>Phase I (3/96)/USA/refractory childhood AML</td>
<td></td>
</tr>
<tr>
<td>Ilex Oncology/Sanofi (ww marketing rights)</td>
<td>Mitoguazone</td>
<td>Polyamine biosynthesis inhibitor</td>
<td>Phase II/USA/refractory/relapsed AIDS-related lymphoma</td>
<td>Orphan drug</td>
</tr>
</tbody>
</table>

--- continued on next page ---
ImmunoGen/Dana-Farber Cancer Institute	Oncolytoxin M, anti-CD6-bR, anti-T12-bR	Conjugate of blocked ricin and a MAb/targets T cell subset responsible for T cell malignancies and acute organ transplant rejection	Phase I/II/USA	On hold as of 1/96
ImmunoGen/Dana-Farber Cancer Institute	Oncolytoxin CD6, anti-CD6-bR, anti-T12-bR	Conjugate of blocked ricin and a MAb/targets T cell subset responsible for T cell malignancies and acute organ transplant rejection	Phase I/II/USA	On hold as of 1/96
Dana-Farber Cancer Institute	Oncolytoxin M, anti-CD33-bR, anti-My9-bR	Conjugate of blocked ricin and a MAb/targets My9 epitope of the myeloid stem cell, and all cells derived from it except RBCs/ex vivo	Phase II/Canada/CML	Phase II completed as of 1/96; on hold
Dana-Farber Cancer Center	Oncolytoxin M	Anti-My9 MAb linked to blocked ricin/ex vivo	Phase II (c/95)/USA/ ex vivo bone marrow purging in AML	No further development reported
Immunomedics	ImmuraReat LL2	Murine MAb LL2 conjugated to 131I	Phase I/II/USA	Being replaced by humanized version
Immunomedics	Humanized-LL2	Humanized MAb LL2 conjugated to 131I	Preclin/USA/ B cell lymphoma	
Immunomedics	Humanized-LL2	Humanized MAb LL2 conjugated to 90Y	Preclin/USA/ B cell lymphoma	
Immunomedics	Dox-LL2	Humanized MAb LL2 conjugated to doxorubicin	Research/USA/ B cell lymphoma	
Innovir/Yale U	External guide sequences (EGS)	Small drug immunoconjugate/ DC1 linked to anti-B4 MAb	IND (as of 1/96)/USA/ relapsed lymphoma	
Kyowa Hakko/NCI	UCN-01, 7-hydroxystaurosporine, UCN-02	Natural product isolated from Streptomyces sp N-126/PKCI inhibitor	Preclin/USA/CLL	
Leo Pharmaceutical Products	KH 1060	Retinoid, vitamin D3 analog	Preclin/USA/ APL and AML	
Ligand Pharmaceuticals	3-methyl-TTNEB/ LGD-1069/Targretin Oral	Retinoid/binds selectively to RXR/PO	Phase I/USA/ various malignancies	

--- continued on next page
<table>
<thead>
<tr>
<th>Company</th>
<th>Product Name</th>
<th>Description</th>
<th>Phase/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynx Therapeutics</td>
<td>LR-3001</td>
<td>24-mer phosphorothioate antisense oligonucleotide/ inhibits c-myc</td>
<td>Phase I/USA/CML in accelerated phase or blast crisis</td>
</tr>
<tr>
<td>Lynx Therapeutics</td>
<td>LR-3523</td>
<td>26-mer phosphorothioate antisense oligonucleotide/inhibits bcr-abl</td>
<td>Research/USA/CML</td>
</tr>
<tr>
<td>Medarex/Dartmouth U (licensor)</td>
<td>MDX-11, PM-81</td>
<td>Bispecific MAAb/binds to leukemia cells; triggers the complement system</td>
<td>Phase I/II/USA/AML</td>
</tr>
<tr>
<td>Medarex/Dartmouth U (licensor)</td>
<td>MDX-22</td>
<td>Bispecific MAAb/bone marrow purging/ex vivo</td>
<td>Phase II (investigator-sponsored IND)/USA Orphan drug</td>
</tr>
<tr>
<td>Mercian/Roger Bellon (Rhone-Poulenc Rorer), Yamanouchi, Behringerke (Hoechst), Lundbeck, Almirall, Zuellig, Dong-A</td>
<td>Aclarubicin, aclacinomycin-A/NSC-208734, Aclacin, Aclacinomycine, Aclacinon, Aclaplatin, Jacacin</td>
<td>Anthracycline antibiotic</td>
<td>Outside the USA/ various cancers A license to Bristol-Myers Squibb for N. and S. America was discontinued; effective salvage regimen for daunorubicin-resistant ANLL in children (Nibu K, et al, Pediatric Hematology and Oncology, 1995 May-Jun, 12(3):251-8)</td>
</tr>
<tr>
<td>Milkhaus Laboratory</td>
<td>LDI-200</td>
<td>Formulation of chorionic gonadotropin</td>
<td>Phase I/II/USA/ leukemia</td>
</tr>
<tr>
<td>Mitotix/DuPont Merck Pharmaceuticals</td>
<td>Cyclin D1 inhibitor</td>
<td>Small molecules/cyclin-dependent kinase (cdk)4/cyclin D1 inhibitor</td>
<td>Preclin/USA/NHL</td>
</tr>
<tr>
<td>Missui Pharmaceuticals/ BASF (Knoll)</td>
<td>MS-209</td>
<td>Quinolone derivative/ chemosensitizer; inhibits P-gp/PO</td>
<td>Phase II/ Japan/leukemia</td>
</tr>
<tr>
<td>Novartis (Ciba Pharmaceuticals)</td>
<td>CGP 57148</td>
<td>2-phenylaminopyridine derivative/ inhibits abl and platelet-derived growth factor (PDGF) receptor protein-tyrosine kinases</td>
<td>Preclin/USA/CML</td>
</tr>
<tr>
<td>NCI (NIH)/Institute of Materia Medica (China; supplier)</td>
<td>Homoharringtonine (HHT), harringtonine (HT)</td>
<td>Natural product isolated from the bark of the evergreen Cephalotaxus hainanensis L; alkaloid/inter-nucleosomal DNA degradation</td>
<td>Phase III/Italy, China; phase II/USA/MDS, AML, CML</td>
</tr>
<tr>
<td>NCI (NIH)/ Pharmachemie</td>
<td>Decitabine, dezocitidine/NSC-127716, DAC</td>
<td>Antimetabolite/DNA synthesis inhibitor/IV infusion</td>
<td>Phase II/USA, Europe/leukemia</td>
</tr>
<tr>
<td>Pharmacia & Upjohn (NA licensee)/Yakult Honsha and Daiichi Pharmaceutical (co-developers)</td>
<td>Ipinotecan/CPT-11/ Camptosar</td>
<td>Topoisomerase I inhibitor/IV</td>
<td>May have application in NHL NDA (10/95)/USA/ colon cancer: oral formulation also in development</td>
</tr>
</tbody>
</table>

— continued on next page
<table>
<thead>
<tr>
<th>Company</th>
<th>Product Name</th>
<th>Description</th>
<th>Phase</th>
<th>Country</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacia & Upjohn/ Yakult Honsha (Japanese co-development and co-marketing rights), EORTC</td>
<td>Adozelesin, adezolin/ U-73975/Adosar</td>
<td>Bifunctional analog of cyclopropylpyrrolo-indole antitumor antibiotics CC-1065/non-intercalative binding in the minor groove of double-stranded DNA (ds-DNA) at A-T-rich sequences followed by covalent binding with N-3 of adenine in preferred sequences/IV</td>
<td>Phase II (9/95)/USA, phase I (9/94)/Japan</td>
<td>In a phase I trial adozelesin was administered to 29 patients as a 24-hour continuous IV infusion, initially every 3 weeks, changed to every 6 weeks (recommended dose is 100 mcg/m²); because of myelosuppression; no antitumor responses were observed (Fleming GF, et al., JNCI, 1994 Mar 2, 86(5):368-72); also see FO, V1 #4</td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn/ NCI (NIH), EORTC</td>
<td>Bizelesin/NSC-615291, U-77779</td>
<td>Bifunctional analog of adozelesin; highly potent bis-alkylating anti-tumor agent/binds to and alkylates DNA at the N-3 position of adenine in a sequence-selective manner/IV/IP</td>
<td>Phase I/II (9/95)/USA</td>
<td>Bizelesin is stable in organic solvents but less stable in aqueous solutions</td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn/ NCI(NIH), EORTC</td>
<td>Carzelesin/NSC-D-619020, U-80244</td>
<td>Cyclopropylpyrrolo-indole prodrug containing a relatively nonreactive chloromethyl precursor to the cyclopropyl function/action similar to bizelesin and adozelesin/IV</td>
<td>Phase I/II (9/95)/USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn</td>
<td>Roquinimex/LS-2616/ Linomide</td>
<td>Immunomodulator/PO</td>
<td>Phase III/USA/leukemia patients treated with autologous marrow transplant</td>
<td>Phase II/Europe/kidney cancer, malignant melanoma</td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn</td>
<td>Tallimustine/FCE 24517</td>
<td>Alkylating benzoyl mustard derivative/sequence-specific DNA, minor groove binder (MGB) of B-DNA</td>
<td>Phase I/II (9/95)/USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn</td>
<td>Bropirimine/Remisar</td>
<td>Immunomodulator/PO</td>
<td>Phase III/USA (9/94); phase II/Japan/refractory NHL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PharmaMar</td>
<td>Ecteinascidins/ET-743, ET-722, ET-736, ET-745, ET-7</td>
<td>Marine product derived from the Caribbean tunicate Ecteinascidia turbinata/may form covalent adducts to DNA</td>
<td>Preclin/Spain/NHL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Design Labs/ Kanebo (licensee, Asia)</td>
<td>HuM195/SMART M195</td>
<td>Humanized anti-CD33 MAbs/reduces or eliminates residual disease by ADCC</td>
<td>Phase II/III/USA (6/94); phase I (9/95)/Japan/AML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Corporation Technologies/ Boston U</td>
<td>IL-16 (formerly lymphocyte chemoattractant factor, or LCF)</td>
<td>IL-16 antagonists/may block proliferation of CD4+ T cells</td>
<td>Research/USA/T cell lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGene Therapeutics</td>
<td>RGA-1512</td>
<td>Antisense oligonucleotide/targets an oncogene on the Ph1 chromosome/liposomal vector, ex vivo and in vivo</td>
<td>Preclin/USA/CML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sankyo</td>
<td>RKS-1286, CNDAC</td>
<td>Nucleoside/DNA-strand-breaking</td>
<td>Preclin/Japan/leukemia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

— continued on next page
<table>
<thead>
<tr>
<th>Company/Institute</th>
<th>Compound/Description</th>
<th>Mode of Administration</th>
<th>Study Phase</th>
<th>Study Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanofi (was in development by Sterling Drug)</td>
<td>Hepasulfam/NSC-329680 Bisulfamic ester, structurally similar to busulfan/bifunctional alkylator inducing both DNA-DNA and DNA-protein crosslinks/IV</td>
<td>Phase I/USA/advanced refractory leukemia</td>
<td>Recommended phase II dose of 480 mg/m² as a single 2-hour IV infusion provided relatively little clinical benefit; dose-limiting toxicity is CNS-related; hematopoietic support may be necessary at doses exceeding 800 mg/m² (Larson RA, et al, Cancer Chemotherapy and Pharmacology, 1995, 36(3): 204-10)</td>
<td></td>
</tr>
<tr>
<td>Schering-Plough</td>
<td>IL-10 Cytokine/promotes apoptosis</td>
<td>Phase I/II/USA/CLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seragen</td>
<td>Interleukin-4 fusion toxin, IL-4 fusion toxin/DAB389IL-4 IL-4 fusion toxin/fused with fragments of diphtheria toxin</td>
<td>Preclin/USA/leukemia, lymphoma, IL-4 receptor-expressing malignancies</td>
<td>In vitro, the toxin selectively bound and killed malignant cells</td>
<td></td>
</tr>
<tr>
<td>Seragen</td>
<td>Interleukin-6 fusion toxin, IL-6 fusion toxin/DAB389IL-6 IL-6 fusion toxin</td>
<td>Preclin/USA/multiple myeloma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seragen/Eli Lilly, Ajinomoto</td>
<td>Interleukin-2 fusion toxin, IL-2 fusion toxin/DAB389IL-2, DAB486IL-2 Fusion toxin/interleukin-2 receptor</td>
<td>Phase III/USA/CTCL; phase II/USA/NHL</td>
<td>Seragen obtained worldwide rights from Ajinomoto to certain IL-2 gene patents</td>
<td></td>
</tr>
<tr>
<td>SmithKline Beecham</td>
<td>Topotecan, hycaptamine/NSC-609699, SK&F-104864 Topoisomerase I inhibitor/IV,PO</td>
<td>Clinical/USA/ALL, CML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparta Pharmaceuticals/Institute of Materia Medica (licensee)</td>
<td>RII retinamide Retinoid</td>
<td>Phase I (b1/96)/USA/MDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanford U</td>
<td>Tumor specific idiotype vaccine Composed of tumor idiotype protein conjugated to a carrier and mixed with an immunologic adjuvant</td>
<td>Phase I/II(b88)/USA/B cell (advanced follicular) lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugen</td>
<td>ALL-TK antagonists ALL-TK antagonist/inhibits growth of human leukemic cells</td>
<td>Preclin/USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugen</td>
<td>ALL-TK antagonists Small molecule/antagonist of tyrosine kinase (TK) activity/ inhibits growth of human leukemic cells</td>
<td>Preclin/USA/ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugen</td>
<td>GRB2 antagonist Small molecule/growth factor receptor binding protein 2 (GRB2) antagonist</td>
<td>Research/USA/CML</td>
<td>Binding of GRB2 to bcr-abl and TK is an essential step in the formation of bcr-abl-induced cancers</td>
<td></td>
</tr>
<tr>
<td>Sunkyong Industries</td>
<td>SKI-2053R Alkylating agent, platinum-based drug/IV</td>
<td>Phase I/S. Korea/leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanox/Takara Schuzo</td>
<td>Migis antibodies, migis-IgA MAb/inhibits IgA synthesis, preventing glomerular deposition of IgA immune complexes</td>
<td>Preclin/lymphoma, leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Techniclone/Alpha Therapeutic (Green Cross licensee in NA, Asia and certain parts of Europe); Biotechnology Development (licensee; elsewhere)</td>
<td>[131I-Lym-1, Lym-1/Oncolym MAb conjugated to iodine-131 ([131I])</td>
<td>Phase III (1/96)/USA/B cell NHL</td>
<td>Orphan drug</td>
<td></td>
</tr>
</tbody>
</table>
four cycles (up to six cycles if the tumor continued to respond), at three week intervals [tamoxifen (10 mg twice daily) was also administered to hormone-dependent patients], a very high response rate was seen with an acceptable low toxicity. The response rate included 13% CR and 70% PR [25% of almost complete responses (ACR) with minimal residual disease and 45% with a substantial amount of residual disease]. Stable disease was observed in 16% of patients, and disease progressed in 1%.

Radiotherapy was started two to three weeks after CR or ACR. No surgery was needed in 38% of cases. For those with stable disease or PR (62%), tumor excision was the second line of treatment. Axillary dissection was not performed unless suspicious nodes were still palpable. Surgical patients were also treated by post-operative radiotherapy with concomitant chemotherapy in larger tumors. Only 23 total mastectomies were required. With an average follow-up of 30 months, a wide local excision was needed in 18 patients because of local recurrence, or non-sterilization in 14 patients with ACRs. There were 33 distant metastases and 22 deaths due to generalization of the disease in the total study group (Poisson R, etal, Abstracts of the 6th ICAT, Pg 70:#117).

Monotherapy

S-1, a new oral antitumor agent, appears to offer promising therapeutic benefits in patients with advanced breast cancer. This newly developed drug biochemically modulates 5-fluorouracil (5-FU), inhibiting its degradation in the liver and phosphorylation in the digestive tract. To accomplish this, tegafur (FT), 5-chelo-2,4-dihydroxyppyridine (CDHP), and potassium oxonate (OXO) were combined in a molar ratio of FT:CDHP:O XO=1:0.4:1. FT releases 5-FU continuously in the liver, CDHP inhibits degradation, and O XO inhibits phosphorylation. UFT, a fixed-ratio combination of uracil and tegafur (Ftorafur; Taiho), a prodrug that is absorbed orally and metabolized in vivo to 5-FU, is one of the leading anticancers in Japan (see FO V1, #2/3 p 55).

In phase I studies, using a single 28-day consecutive administration in 17 evaluable patients with a variety of solid tumors, MTD was estimated at 150-199 mg/body/day, once-a-day, or 75-99 mg/body/day, as a twice-a-day regimen. A number of early phase II studies were carried out administering S-1 to patients with a wide range of solid tumors. In the study on advanced breast cancer, in 27 evaluable women, the overall objective response rate was 40%, with four CRs and 17 PRs. Major toxicities (over grade 3), observed in patients with advanced breast cancer who received S-1, were hemoglobinemia (3.7%) and stomatitis (3.7%). Based on these findings, plus those carried out in patients with gastric, colorectal and head and neck cancer, further studies with S-1 are merited in persons with advanced cancer (Taguchi T, Abstracts of the 6th ICAT, Pg 58:#73).

Combination Therapy

Docetaxel (Taxotere; Rhône-Poulenc Rorer), combined with vinorelbine, is very active against metastatic breast cancer. In a phase I dose-ranging study, 28 women with metastatic breast cancer, previously untreated with chemotherapy, received vinorelbine (20 to 22.5 mg/m² by 30 minute iv infusion on days one and five), followed by docetaxel (60-100 mg/m² by one-hour IV infusion on day one only), repeated every three weeks. Five different dose levels were administered to at least three patients...
per dose level. Patients were also premedicated with dexamethasone, antihistamines, and ranitidine to mitigate potential drug-related adverse effects.

Two MTDs were reached. At 75 mg/m² docetaxel plus 22.5 mg/m² vinorelbine, dose-limiting toxicities were febrile neutropenia and mucositis. On the assumption that mucositis was more related to vinorelbine than docetaxel, a lower dose of vinorelbine (20 mg/m²) was investigated with increasing doses of docetaxel. This protocol reached a second MTD at 20 mg/m² vinorelbine plus 100 mg/m² docetaxel. The recommended dose for phase II studies is 85 mg/m² docetaxel on day one and 20 mg/m² vinorelbine on days one and five. The overall objective response rate was 70%. Responses were seen at every level but more so at levels four (V 20 mg/m² D 85 mg/m²) and five (V 20 mg/m² D 100 mg/m²) (Fumoleau P etal, Abstracts of the 6th ICAT, Pg 65: #97).

Exhibit 3
Method of Counting Microvessels

- Select a representative histologic sample, and cut 5 m-thick sections from the paraffin-imbedded specimen
- Immunostain the sections with an endothelial marker to highlight microvessels (venules and capillaries)
- Manually scan the immunostained section at low magnification (40-100x) to identify areas of tumor with the greatest number of highlighted microvessels (hot spots)
- Count all vessels at 200x field (0.74 mm² area) within the hot spot; endothelial clusters should be counted as a single microvessel; presence of a lumen is not necessary for a structure to be counted as a microvessel

Note: Each evaluation should be performed by two investigators using a double-headed microscope; each investigator should agree on what is an identifiable microvessel

Source: Vincent W. Li, the Angiogenesis Foundation

Paclitaxel (Taxol; Bristol-Myers Squibb), in combination with vinorelbine, is an effective salvage regimen in women with advanced breast cancer. Combination therapy with paclitaxel (135 mg/m²), administered as a three-hour IV infusion, plus vinorelbine (25 mg/m² on days one and three or eight) may be administered at greater dose intensity on a day one and three schedule. Among 34 previously treated patients (all but two were exposed to anthracyclines) with advanced breast cancer, 35% experienced an objective response. Side effects of the drug combination included grade 4 neutropenia, observed in 63% of courses, with 14 episodes of febrile neutropenia. Also, grade 3 mucositis was reported in the vinorelbine days one and three arm (Conte PF etal, Abstracts of the 6th ICAT, Pg 148: S17).

Paclitaxel, given as a three-hour infusion, in combination with doxorubicin, is a highly active, but also toxic, (particularly cardiotoxic), regimen in metastatic breast cancer. In a phase I/II study, 29 women with metastatic breast cancer who was treated at most with one prior adjuvant chemotherapy regimen, were given doxorubicin as a 30-minute infusion, followed by paclitaxel as a three-hour infusion every three weeks at dose levels of 50/155 mg/m² (3 patients), 60/175 mg/m² (21 patients) and, 60/200 mg/m² (5 patients). Eighty-three percent of patients had bone and/or visceral metastases. In 29 evaluable patients, overall response rate was 83%, with seven CRs and 17 PRs. Median time to progression was nine months; nine patients progressed during therapy, four in the central nervous system. Main toxicities, among 265 courses of chemotherapy, included neutropenia, paresthesias, nausea and vomiting, alopecia, myalgia, and cardiotoxicity [50% of patients experienced a drop in left ventricular ejection fraction (LVEF) to below normal levels and six developed heart failure]. Consequently, doxorubicin at a cumulative dose of 360 mg/m² was stopped (Gehl J etal, Abstracts of the 6th ICAT, Pg 148:S16).

Vinorelbine (Navelbine; Glaxo Wellcome), in combination with mitoxantrone and carboplatin, proved a safe, well tolerated, and effective first line treatment in metastatic breast cancer, both in patients with a favorable prognosis (one metastatic site) and in those with multiple metastatic lesions. Thirty-one chemotherapy-naive patients with metastatic breast cancer (36% with single metastatic site) were treated with vinorelbine (30 mg/m² on day one), mitoxantrone (10 mg/m² on day one), and carboplatin (250 mg/m² on day two), every three weeks. Overall response rate in 29 evaluable patients was 65%, with two CRs (7%) and 17 PRs (58%). In addition, disease stabilized in four patients (14%) and progressed in six (21%). Chemotherapy, administered on an outpatient basis, was generally well tolerated. Prophylactic use of hemopoetic growth factors prevented severe myelotoxicity. Best responses were seen in lung and soft tissues, but important responses also were also observed in other sites, including the liver. Median time to disease progression was 7.1 months (range 1-16 months). Median duration of survival was 11 plus months (range 2-21 months) (Kakolyris S etal, Abstracts of the 6th ICAT, Pg 159: S123).

Patients with advanced breast cancer treated with weekly epirubicin plus vinorelbine benefited from high dose regimens by the addition of G-CSF. Thirty-two chemotherapy-naive women were treated with a combination regimen of epirubicin (25 mg/m³) and vinorelbine (25 mg/m³), administered weekly, along with G-CSF (300 mg/day, subcutaneously, three times a week). At the time of the report, among 27 evaluable patients, the objective response rate was 74%, with four CRs (14.8%) and 16 PRs (59.2%). Another seven patients experienced stable disease. In six months of treatment, no disease progression was seen. Furthermore, in a 20 month follow-up, median duration of response in patients with CR was 18 months and, in persons with PR, 10.7 months. This regimen requires that G-CSF is administered in the first six weeks.
of treatment because of higher than grade II neutropenia, without any serious infection. Use of G-CSF permitted a high dose-intensity equal to 86% of the theoretically desired dose. Furthermore, activity of this drug combination occurred irrespective of the prognosis of the various patient subgroups (Terzoli E, et al, Abstracts of the 6th ICAT, Pg 71:#121).

Combination of vinorelbine and ifosfamide was also shown to be active in patients with metastatic breast cancer who failed anthracycline-based chemotherapy. In a phase II clinical trial, 25 women with metastatic breast cancer resistant to first-line anthracycline therapy, were treated with ifosfamide (1000 mg/m² daily, as a two-hour IV infusion on days one to five) plus vinorelbine (25 mg/m² on day one and eight), every three weeks. Mensa was administered IV at 20% of the ifosfamide dose at time 0 and, orally, at 40% of the ifosfamide dose, at hours four and eight. Drug-related toxicity was acceptable and no life threatening side effects were seen. Chief adverse effects were nausea and vomiting, leukopenia, anemia, alopecia, and mucositis, but all were at grade 1-2 level. The overall objective response rate was 28%, with seven PRs. Disease stabilized in ten women (40%) and progressed in 30%. Median duration of response was four months, with a range of 2-12+ months (Queirolo P, et al, Abstracts of the 6th ICAT, Pg 70:#118).

Gemcitabine (Gemzar; Eli Lilly) in combination with doxorubicin exhibited promising activity, with modest toxicity, in patients with advanced breast cancer. Twenty-one chemotherapy-naive women with metastatic breast cancer were treated with gemcitabine as a 30-minute infusion on days one, eight, and 15 of each 28 day cycle, with the first six receiving a dose of 800 mg/m² weekly, the second six 1000 mg/m² weekly, and the last nine 800 mg/m² weekly; doxorubicin (25 mg/m²) was administered after gemcitabine. In 19 evaluable patients, the overall objective response rate was 68.4%, with 3 CRs and 7 PRs. Response was four months, with a range of 2-12+ months (Queirolo P, et al, Abstracts of the 6th ICAT, Pg 70:#118).

Intra-arterial Chemotherapy

Intra-arterial chemotherapy (IAC) is an effective, well-tolerated treatment for women with recurrent breast cancer, resistant to other treatment modalities. Thirty-nine patients with recurrent breast cancer were treated with superselective IAC, using mitoxantrone (25 mg/m²), over a period of 24 hours. The drug was infused via sidebranches of the subclavian artery under heparin administration. The extent of tumor perfusion was controlled with angio-CT imaging. IAC was repeated every three to six weeks from one to nine times. Prior to IAC, all patients had undergone radiotherapy, 51% had undergone repeated surgical procedures, and 59% were exposed to systemic chemotherapy. Overall response rate was 75% (21% CRs and 54% PRs), and 8% experienced disease progression. Remission following IAC was also observed in patients with mediastinal or lymph node involvement. Seven women are still under treatment. However, 23% of patients died from systemic tumor spread and 36% developed distant metastases within 18 months while undergoing therapy. Side effects were moderate and did not affect patients’ quality of life (Gorlich J, et al, Abstracts of the 6th ICAT, Pg 64:#93).

INDEX OF COMPANIES & INSTITUTIONS

Agracetus 248
Ajinomoto 257
Allergan 250, 255
Allergan Liganid Retinoid Therapeutics (ALRT) 250, 255
Almirall 258
Alpha Therapeutic 247, 260
American Cyanamid 255
American Home Products 243, 255
Amenic 249, 255
Angiogenesis Foundation 263
Anticancer 253, 255
Apollo 248, 255
Arizona Cancer Center 249
Aronex Pharmaceuticals 250, 253, 255
BASF 258
Behringwerke 258
BioCryst Pharmaceuticals 253, 255
Biotechnology Development 247, 260
Boston University 259
Breast Center 254
Bristol-Myers Squibb 248, 251,
255, 258, 262
Bristol-Myers Squibb Pharmaceutical Research Institute 247
BTG 256
BvK Gulden 255
Cambridge University 256
Cancer Research Campaign 245
Celgene 243, 255
Centocor 248